We study the formation of derivative prices in equilibrium between risk-neutral agents with heterogeneous beliefs about the dynamics of the underlying. Under the condition that the derivative cannot be shorted, we prove the existence of a unique equilibrium price and show that it incorporates the speculative value of possibly reselling the derivative. This value typically leads to a bubble; that is, the price exceeds the autonomous valuation of any given agent. Mathematically, the equilibrium price operator is of the same nonlinear form that is obtained in single-agent settings with strong aversion against model uncertainty. Thus, our equilibrium leads to a novel interpretation of this price.
↧
A Risk-Neutral Equilibrium Leading to Uncertain Volatility Pricing. (arXiv:1612.09152v1 [q-fin.MF])
↧